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We investigate propositional systems for local field theories, which reflect 
intrinsically the uncertainties of measurements made on the physical system, 
and satisfy the isotony and local commutativity postulates of Haag and Kastler. 
The space-time covariance can be implemented in a natural way in these 
propositional systems. New techniques are introduced to obtain these proposi- 
tional systems: the lattice-valued logics. The decomposition of the complete 
orthomodular lattice-valued logics shows that these logics are more general than 
the usual two-valued ones and that in these logics there is enough structure to 
characterize the classical and quantum, nonrelativistic and relativistic local field 
theories in a natural way. The Hilbert modules give the natural inner product 
"spaces" (modules) for the realization of the lattice-valued logics. 

1. I N T R O D U C T I O N  

It  is a we l l -known fact  tha t  the relat ivis t ic  q u a n t u m  f ie ld  theory  used  
n o w a d a y s  possesses m a n y  m a t h e m a t i c a l l y  as well as phys ica l ly  unsat is fac-  
tory  features.  To solve these diff icult ies ,  at  least  par t ly ,  we th ink  tha t  one  
mus t  f ind,  first of  all,  a m a t h e m a t i c a l l y  wel l -def ined  k inemat i ca l  p ic ture  in 
which we can  then  i m p l e m e n t  in o rde r  the d y n a m i c a l  pr inciples .  Such a 
k inemat i ca l  p ic ture  has  to be in  a s imple  a n d  c lear  connec t ion  with  the  
measur ing  processes  m a d e  on  phys ica l  fields (or  on  observables) .  

In  such measur ing  processes  a re  uncer ta in t ies  of pr inc ip le  which  can  
be  r e d u c e d  ideal ly  to two c o m p o n e n t s :  

(1) The  measur ings  of  two different observables on  a (small)  reg ion  of  
the  phys ica l  space  f~ (or, ideal ly ,  a t  a po in t  x E f~) can  d i s turb  each  other.  
( In  nonre la t iv is t ic  q u a n t u m  mechan ic s  this is the on ly  case cons idered . )  
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(2) The measurings of observables in two different regions of the 
physical space f~ (or, ideally, at two different points Xl, x 2 E [2) can disturb 
each other. (This is characteristic for a relativistic quantum field theory.) 

Einstein causality (or local commutativity), which refers to the second 
case, restricts the possible regions (or points) to the lightlike or timelike 
separated ones [in the nonrelativistic case the measurements do not inter- 
fere with each other in disjoint regions S1, S 2 C~~CR 3, S 1 (")S 2 ~--~, thus 
essentially the uncertainty under (1) appears only in this case]. 

These two types of noncompatibilities must be reflected intrinsically 
in the mathematical structure of the wanted kinematical picture of local 
fields. To find a good kinematical picture, our starting point was the 
quantum logic approach to axiomatic quantum theory (Birkhoff and von 
Neumann, 1936; Mackey, 1963; Jauch, 1968; Gudder, 1970; Piton, 1976). 

At present there is not yet known a generalization of this approach to 
field theory. It seems that the existing methods and techniques are inade- 
quate to fill up this gap, so we introduce a new technique, namely, the 
lattice-valued logics, which, we think, does the trick. Briefly, after a short 
consideration of classical local field theory we introduce Boolean-valued 
propositions in the classical cases. Then we generalize this Boolean-valued 
logic to a complete orthomodular lattice-valued logic. The study of lattice- 
valued logics shows that there are in these logics enough structure to 
characterize in a simple and clear way the different (classical and quan- 
tum, nonrelativistic and relativistic) field theoretic cases. We show briefly 
the connection between this approach and the C*-algebraic approach of 
Haag and Kastler (1964). Further we give examples for the realizations of 
lattice-valued logics and lattice-valued propositional systems by Hilbert 
modules. (A Hilbert module is a module over a *-algebra and it has similar 
properties as a Hilbert space (see for definition Banai, 1978)). 

We hope that these new techniques and methods will be used profit- 
ably and usefully in the study of C* and IV* algebras and Segal algebras 
as well as in quantum set theory (of Takeuti, 1979) and lead us nearer to a 
well-defined analytical formalism for the numerical calculation of relativis- 
tic quantum field theory (see Banai, 1980a, b), 

We note that the work of Bahai (1978) served as background of the 
ideas of this work, and the main concepts and results of this paper have 
been drawn from the doctoral thesis of the author (Banal, 1980c). 

2. PHYSICAL ASSUMPTIONS AND PROPOSITIONS 
IN CLASSICAL LOCAL FIELD THEORIES 

We consider a physical system P(f~) spread over a physical space 
region ~2 (f~CR 3 in the nonrelativistic case, or f~ C ~ 4  in the relativistic 
case). 
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Depending on the choice of the subset f~, the physical system P(f]) is 
described by the tools of the 

(a) point mechanics (f2: = n points in R 3, respectively, word lines in 
~y~4), 

(b) statistical mechanics (n>> 1), or 
(c) local field theory (~ is a domain, but it can be the whole space, 

too). 

In what follows we shall consider mainly the cases under (c). Let A(f~) 
denote a measuring apparatus which covers f~ or a subset of f~ and can 
interact with P(~)  on f] or a subset of fL This can be implemented, for 
example, so that one places densely (in the ideal case at all points) 
measuring apparatuses (and observers) on f~ to be able to measure all parts 
of P(f~). Then the complete collection of these apparatuses means the 
measuring apparatus for us. 

The measure of a physical observable F means a specific interaction 
characteristic for F, between P(~2) and A(~). This interaction modifies the 
interacting "surface" of A(f~) and this deformation, which is a function on 
f~, gives the measured value of F. One can determine this deformation by 
the above-mentioned way that the observers measure the change at all 
points of ~2. 

We can distinguish essentially two types of observables of a P(~2) 
from the measuring point of view: 

(1) Global observables, which characterize the whole P(f~) and whose 
values are independent of the points of ~ (e.g., total energy). 

(2) Local observables 'which characterize P(f~) (point by point) at the 
points of f~ and whose values depend on x E f~ (e.g., energy density). 

A wide class of global observables can perform by means of local 
ones. More exactly: A global observable F can be defined to all local 
observables ~ which have integrable functions f(x) as measured val- 
ues, with the integral 

f= fd(x) d.(x) 
where f denotes the measured value of F and #(x)  is a measure character- 
istic for F. Written in symbols 

For example: In the classical field theory, the energy-momentum four- 
vector P~ is determined by the integral 

T P e.  = s  .~(x)ao (x) 

where T.~(x) is the energy-momentum tensor field. 
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Thus we will consider mainly local observables of a P(~) ,  in what 
follows. 

The space of all the possible values of the observables [the observation 
space of Birkhoff and von Neumann (1936)] is a subspace of R N for global 
observables and a submodule of R~(~2) for local observables, where R(~)  
is a real-valued function space on f]. 

The experimental propositions of a physical system P(~2) correspond 
to the subsets (of certain type) of the observation space. The Borel subsets 
of R u, for example, are such subsets in the case of global observables. To 
avoid technical difficulties, we shall consider, as experimental propositions, 
the subsets SN(f~) of RN(~]) of the form 

SN(~2) : = [ a, b)N(~)  : = ( f / ~ R i ( ~ ) , a  i <~fi(x) < bi, 

X V x ~ 2 ,  ai, bi E R ,  i= l . . . . .  N} 

If we choose a proposition (i.e., a subset from the observation space), then 
the measured values of a sequence of global observables either coincide 
under the corresponding measurement with an element of the chosen 
subset or not. But in the case of local observables, i f f ( x )  = ( f l ( x ) , . . . ,  fu (x ) )  
denotes the measured value of a sequence Fl(x ) . . . . .  FN(x ) of local ob- 
servables and sN(f~) is the proposition considered, then we can find under 
the measurement the following three possibilities: 

(a) f ( x )  is completely outside SN(f~): = [a, b)U(f~), 
Co) f ( x )  is inside SN(~2) for a subset w of ~2 and is outside sN(f~) for 

C~, (Cw: = f ~ - ~  is the set-theoretic complement of 0~), 
(c) f ( x )  is completely inside SN(9). 

In the usual sense, the proposition SU(f~) is true in case (c) and false in 
cases (a) and Co). Thus we lose the information content of case (b) 
provided by the measurement, if we only allow the true and false value for 
the propositions. This would mean that these propositions are not the 
simplest corresponding to the measurements. To preserve all information 
of the measurement in the simplest way, we give a new logical value for the 
case (b) and call it the true-false value. Also one could say: a proposition 
SN(s is 

(x) false if its value is the empty set ~ ,  
(xx) true-false if its value is a subset o~ of [t; SN(f~) is true on ~0 and 

false on C~, 
(xxx) true if its value is the whole set ft. 

This means that the propositions of a classical physical system P(~) ,  in 
general, take their values in the power set 6)(~) of the set ~. If one regards 
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only the measurable  proposi t ions of a P(f~), then they have values in the 
Borel sets B(f])  of  fL Thus we are led to consider the system of proposi-  
tions of a classical physical system P ( a )  as a Boolean-valued logic (Jech, 
1971; Takeuti,  1973). 

3. T H E  S Y S T E M S  O F  P R O P O S I T I O N S  AS  
L A T r I C E - V A L U E D  L O G I C S  

We follow the conclusion of the preceding section and  we suppose 
that, in the most  general cases [e.g., in the relativistic quan tum cases, 
keeping in mind  the two componen t s  (1) and  (2) of  the uncertainties of the 
measurements  ment ioned  in the Introduction],  the set l =  (a,  b, c . . . .  } of  
values of the local proposi t ions of a general physical system P( f ] )  is a 
complete orthomodular lattice with union  V ,  in te r sec t ion /k  and  or thocom-  
plementat ion ,.2 

Fur thermore  we shall call a local proposition (briefly, proposit ion) 
every experiment leading to an  alternative of which the terms are the 
elements of  a complete  o r thomodu la r  lattice l with maximal  element 1 and  
minimal element 0. 

Let  L = (A, B, C . . . .  ) be the system of (local) proposi t ions of a general 
P(f~). One can easily impose axioms on L, dose,  as much  as possible, to 
those of a usual q u a n t u m  mechanica l  logic. We  follow here closely the 
works of Gudder  (1970) and  Piron (1976). 

Let us take an appropr ia te  set of  such axioms. 
Whenever  a proposi t ion A takes a value a in l it follows that a 

proposi t ion B takes a value b in l such that  a < b and  we say A implies B, 
or  in symbols,  A C_B. This relation should satisfy: 

( A I )  A C A ,  V A ~ L  

(A2) AC_B, Bc_C~AC_C 

(A3) 3 A C B ,  B C A ~ A = B  

Thus (L ,  C_) is a partially ordered set and the least upper  bound  (LUB) 

2Behind this choice (i.e., that l is not Boolean in general) is the clear (intuitive) expectation 
that we shall be able to describe in the value lattice of the propositions the second type of the 
uncertainties of measurements (because, as we saw in the previous section, the values of the 
propositions are in direct connection with the subsets of ~) while we will describe the first 
type of the uncertainties in the system of (local) propositions. 

aWe note that (A3) shows that a proposition means for us an equivalence class of questions of 
Piron (1976). 
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and the greatest lower b o u n d  (GLB) can be defined in the usual way  (see 
for  example Gudder ,  1970). W e  denote  them by  U and f-I, respectively. 
The LUB and G L B  exist not necessarily in (L ,  C_). 4 Fo r  mathemat ical  
convenience and simplicity we shall require now 

(A4) For  any  family A i E L ,  the G L B  ~ A i exists in L and  
i 

its value is /X ai in l, where a i is the value of A i. 
i 

N o w  the logical negat ion corresponds to or thocomplementa t ion :  for  A e L  
we assume that there is an A E L  which is true whenever A is false and  
t rue- fa l se  whenever A is fa l se- t rue ;  if a is the value of  A then a '  is the 
value of A. We call X the o r thocomplement  of A and  we postulate that  the 
map  A---~_4 satisfies 

(AS) (Y) =A, Va eL 

(A6) A C_B~BC_A 

(A7) A A ~T= 0, VA E L (0 is the minimal  element of L)5 

It immediately follows that L is a complete o r thocomplemented  lattice 
with the unique minimal  element 0 and maximal  element ~. The  only 
possible values of 0 and ~ are the 0 and  1 elements of  l, respectively. 

We postulate further that  

(A8) L is weakly modular :  

A c _ B ~ ( B A A ) u A = B ,  VA, B E L  

Thus L is a complete o r thomodular  lattice, i.e., a C R O C  in the terminology 
of Piron (1976). 

We say that A E L  is or thogonal  (or disjoint) to B if A C_/T, in write 
A _1_ B. We  can now define the not ion  of compatibi l i ty either with Gudder ' s  
(1970) (and others')  or  with Piron 's  (1976) (and others ')  definition. 

4Piron (1976) proves that the set of propositions is a complete lattice (Theorem 2.1), but he 
supposes under the proof that the set of questions is a complete lattice. Thus he only proves 
that, if the set of questions is a complete lattice then the equivalence classes of questions 
(propositions) are a complete lattice. 

5We note that (A7) shows that we can redefine every proposition A as a two-valued one; A is 
true if its value is a and false if its value is a'. (But it is clear that the set of values of A 
cannot be identified with the set (0, 1 }.) The author is indebted to D. Finkelstein for calling 
his attention to this fact. 
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Definition 1. Two propositions A and B in L are compatible if there 
exist mutually orthogonal propositions A1, BI, C such that A--A 1U C, 
B = B 1 u C .  

Definition 1'. Two propositions A and B, in L are said to be compati- 
ble if the sublattice generated by (A, A_ B,/~) is distributive. 

We denote this property by A~---~B. 
These two definitions of compatibility are equivalent for a weakly 

modular orthocomplemented lattice [as can easily be verified; see Banal 
(1980c)]. This shows the prominent practical role of the weak modularity 
axiom, too. 

We note that the basic rules of the propositional calculus (Piron, 1976) 
and those theorems which follow directly from these rules, remain valid 
because L is a CROC. 

The compatibility is the exact formulation of the simultaneous mea- 
surability in the system of propositions (Gudder, 1970). We assumed in the 
axioms of partial ordering that A and B are simultaneously testable if 
A C_ B. Also to avoid contradiction, the following statement must hold in L. 

Lemma 2. If A C_B then A.-~B. 

Proof It follows from (A8) that B = ( B n - A ) u A ,  but (BN~'I)uA and 0 
is orthogonal to every other proposition. Hence B = (B n A) U A, A = 0 U A. 
Then A~---~B according to Definition 1. �9 

Further, any A E L  must be compatible with A EL,  that is satisfied, in 
fact. 

The partial ordering and orthocomplementation were defined by the 
values of the propositions and by the corresponding structure of 1. So it is 
useful to define a value function which assigns to an element of L its value 
and which is a map L ~ l  and preserves the structure of L. Further, it maps 
the maximal element of L onto the maximal element of 1. We must expect 
physically that a value function maps compatible elements in L onto 
compatible elements in 1. Thus a value function is, in particular, a unitary 
e-morphism of Piron (1976) from L to l. Therefore we have the following 
definition. 

Definition 3. 
value function if 

(a) 

(b) 
(c) 

A mapping v from a CROC L onto a CROC / is called a 



Thus we are able to define a lattice-valued logic in an appropriate way. 

Definition 4. We call the triple (L,  l, V) a CROC-valued logic if L and 
l are CROCs and V is the nonempty class of value functions from L onto I 
such that Va ~ 13A a @ L v(A ~) = a, Vv ~ V. It is clear that the element A a is 
unique. 

Let us see now the compatibility relation between L and l. 

Lemma 5. (a) A, B E L ,  A<-->B~v(A)<-->v(B); (b) v ( A ) l  v (B)  in 
I~A<-->B in L. 

Proof (a) By Definition 1 Ac-->B~3A l, B 1, C@L mutually orthogonal 
such that A =A 1U C, B = B 1 tO C. Then v( A ) = v( A O V v( C ), v( B ) = v( B 0 
Vv(C) .  Since A 1 •  BI l C ,  AI l BI~v(A1)_Lv(C) ,  v ( B 1 ) l v ( C ) ,  
v(A1)d- v(B1). 

(b) v( A)-J- v( B )c=>v( A) < v( B )' <=~A C_ffc=oA _k B~A<->B. �9 

Corollary 6. If a, t~ C l, a / I )  and a = v ( ~ ) ,  b = v ( ~ ) ,  ~, ~ C L  
then A/r-->~, v E V. The image of a Boolean sublattice of L under a 
v E V is a Boolean sublattice in I and the image of a maximal 
Boolean sublattice of L is a maximal Boolean sublattice of l. 

We call the pair (G, c) the center pair of a CROC-valued logic 
(L,  l, V) if ~ and c are the centers of L and l, respectively. Then we have 
the following lemma. 

Lemma 7. In a CROC-valued logic (L,  I, V), v ( ~ ) = c ,  v E  V and 
(C, c, vle ) is a Boolean CROC-valued logic (i.e., G and c are 
Boolean). 

Proof A v ~  V preserves the compatibility and is surjective; thus we 
have A E~:>A<--~VB~L~v(A)<-->Vv(B)@I~v(A)~c~v(C)C_c. Now if a 
~c  is arbitrary we have to prove that 3A E L  such that v (A)=a .  It is clear 
that the A = A  ~ is such an element in C. For, if a@c~a 'Ec ,  consider the 
following: (1) B E L and v( B ) < a' ~ v (  B )_L a ~  B<-->Aa; (2) B E L and v( B ) 
<a~BCA"~B<-->A~; (3) B E L  and v ( B ) = b  is arbitrary. Since a E c ,  
a<-->b~a=al Vc,  b=bx Vc ,  a l, b l, c are mutually orthogonal; further, 
c = a A b < a  and b l = b / X ( a ' v b ' ) = a ' / ~ b < < a '  (see Gudder, 1970, Lemma 
4.2; Piron, 1976, Theorem 2.19) ==#BCA bl u A  c, A bl _L AC ~B<---~A ~ =Aa' U 
A c" 

Now C and c are Boolean CROCs (Piron, 1976) and v ( G ) = c ,  VvE 1I, 
thus (C, c, Vie)  is a Boolean CROC-valued logic. �9 

Finally we impose the atomicity axion on L. 
If AraB, A, B E L ,  and A C B ,  one says that B covers A when 

A C X C B ~ X = A  or X = B .  An element which covers 0 is called an atom. 
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We require the following: 
(A9) If A E L ,  A ~ 0 ,  then 3 P E L  an atom such that PC_A, 

(i.e., L is an atomic lattice). 
(A10) If P E L is an atom, B E L, P fq B = 0, then P U B covers B. 

Thus a set of lattice-valued propositions L satisfying axioms (A1)-  
(A10) is a propositional system in the sense of Piron (1976, p. 25). 

Definition 8. A CROC-valued logic (L,  l, V) is called a CROC-valued 
propositional system whenever L and I are propositional systems. A CROC- 
valued propositional system is called classical if L and 1 are distributive 
(Boolean). 

Remark. It is well known that Piron determined the realization of the 
axioms (A1)-(A10), in the usual two-valued cases (except some special 
cases), with (generalized) Hilbert spaces (Piron, 1976). This is the practical 
reason why we imposed essentially the same axioms on the systems of local 
propositions; we expect that one could determine the Hilbert realization of 
the CROC-valued propositional systems with an appropriate generalization 
of the Piron method. Also we consider first this "minimal program" and 
after the completion of this program we could pass over to the research of 
the realization of a more general system of axioms in a clear way having 
the new information provided by the realization of the relatively simpler 
axioms (A1)-  (A10) . 

The covering law [axiom (A10)] plays an essential role in the Piron 
realization of the propositional systems. Thus, in accordance with our 
minimal program, we have imposed on L this axiom, too, although it is not 
known yet whether this axiom will play a significant role in the determina- 
tion of the Hilbert realization of the axioms or not. In Section 7, we will 
see that it is possible to construct such representations with Hilbert 
modules, in which axioms (A9)-(A10) have no role, i.e., they realize 
merely the axioms (A1)-(A8). 

4. D E C O M P O S I T I O N S  OF T H E  CROC-VALUED 
P R O P O S I T I O N A L  SYSTEMS AND CROC-VALUED LOGICS 

One can easily decompose a CROC-valued propositional system into 
irreducible ones with the use of slightly generalized methods and concepts 
of Piron's textbook from page 29 to page 35. Here follow only the main 
concepts and the resulting generalized theorems. It is not possible to give 
the proofs and all technical details, because this paper would grow much 
too long. These are left to the reader and to the reference Banal (1980c). 
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Definition 9. We call a pair of maps (M, m) a c-morphism pair from a 
CROC-valued logic (Ll,/1,  V1) into a CROC-valued logic (L2, 12, 1/2) if M 
and m are c-morphisms from L~ into L 2 and from 11 into 12, respectively, 
and for all v~ E V 1 there exists a v 2 ~ V 2 such that 

MoI)2IM(L~ ) -~191 om  

Then the image of a CROC-valued logic under a c-morphism pair is a 
CROC-valued logic. 

Theorem 10. If (G, c) is the center pair of a CROC-valued prop- 
ositional system (L , I ,V )  then (C, c ,V[e ) is a classical CROC- 
valued propositional system. 

Definition 11. We shall define the direct union of a family (La, l~, V~) 
of CROC-valued logics as a CROC-valued logic (L, l, V ) =  [..J (La,/~, V~) 

Ot 

obtained in the following manner: L and l are the direct unions of the L,,'s 
and l~'s, respectively: L =  LJ L~, l=  ~/ l~, and V ] L =  V~ [where the 

Ol Ol 

equality means that v E V ~ 3 ~ ( v I L ~ V ~ ) ,  and conversely v ~ E V ~ 3 v E  
V(vlLo=v~)]. 
The direct union of CROC-valued logics is a CROC-valued logic, in fact, 
and the direct union of CROC-valued propositional systems is a CROC- 
valued propositional system. 

Theorem 12. In L.J (L~, l~, V~), {X~)<--~(Y~), (x~}~-~{y~) iff X~--~ 

Y~, x~,~-~y~, respectively. In particular, the center pair of 
[..] (L , ,  l,~, V~) is the direct union of the center pairs of the 

(L~, l,~, V~). 

Definition 13. A CROC-valued logic (L, l, V) is irreducible if (a) / 
cannot be split as a direct union of two of its sublattices, each containing 
more than one element; (b) L cannot be split as a direct union of two of 
its sublattices, each containing at least one (not necessarily proper) sub- 
lattice isomorphic to l with respect to a value function restricted to the 
sublattice. 

Theorem 14. A CROC-valued logic (L, l, V) is irreducible iff its 
center pair (C, c )=( (0 ,  }, {0, 1}). 

Theorem 15. Every CROC-valued propositional system (L, l, V) is 
the direct union of irreducible CROC-valued propositional sys- 
tems. 
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Theorem 16. A CROC-valued logic (L, 1, V) is the direct union of 
irreducible CROC-valued logics iff its center pair (C, c) is atomic 
(both ~ and c are atomic). 

We can give a weakened irreducibility notion for CROC- (lattice-) 
valued logics, which may be useful in studying the structure of lattice-valued 
logics and general orthomodular lattices which are equivalent with lattice- 
valued logics. 

Definition 17. A CROC-valued logic (L, l, V) is weakly irreducible if L 
cannot be split as a direct union of its two sublattices, each containing at 
least one (not necessarily proper) sublattice isomorphic to l with respect to 
a value function restricted to the sublattice. 

We can prove then the facts about the weak irreducibility with the 
same methods as those of the above theorems, leaving only the lattice of 
values l fixed in the notions and concepts (for details and proofs see Banai, 
1980c). 

Proposition 18. A CROC-valued logic (L, l, V) is weakly irreducible 
iff, in its center pair (C, c), C-------c. 

For the proof of this proposition the following lemma is necessary. 

Lemma 19. Let (G, c, V) be a Boolean CROC-valued logic. Then 

(c, r v) = U (ca, 
C~ 

where C a ~ c and V~ = (id: ~-~c} (id means the identity mapping). 

Proof It is sufficient to show that the case c c C c c U  c cannot occur, 
where also C is greater than c but it is smaller than the direct union of two c 
(defining the inclusion with a sublattice). Such a C cannot take place in a 
CROC-valued logic (C, c, V), for, on the contrary, there exists a Z e C  such 
tha t [0 ,  Z ] ~ c  and ([0, Z] ,c ,  (id)) is a CROC-valued logic. Then either 
[0, Z_] is isomorphic to c or it contains a sublattice isomorphic to c, since 
([0, Z], c, VE0,gl) is a CROC-valued logic, too. This contradicts our as- 
sumption. The statement follows with (finite or transfinite) induction. [] 

Proposition 20. Every CROC-valued logic (L, l, V) is the direct union 
of weakly irreducible CROC-valued logics. More precisely 

(L,I,V)= U 

where C a ~ c, Va. 
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5. THE CLASSIFICATION OF CROC-VALUED LOGICS AND 
CROC-VALUED PROPOSITIONAL SYSTEMS 

The above theorems enable us to classify the CROC-valued proposi- 
tional systems and to reduce a large class of these systems to the usual 
two-valued cases. 

(1) (~,c,V[e)=(L,I,V), i.e., (L,I,V) is a classical CROC-valued 
propositional system, if it satisfy (A9), (A10). In this case 

(L,I,V)= U (L~,l, Vx)= U (Lx#,ll3,Vxl~) 
et x B  

(5.1) 

where (L x, l, V~)'s are weakly irreducible components; L~ is isomorphic to 
l, for all a; further ( L ~ ,  la, V~) is an irreducible component; Lxt ~ and l~ 
contain only two elements. Also an irreducible component is isomorphic to 
a classical two-valued irreducible propositional system. If (A9) and (A10) 
are not satisfied by (L, l, V) then only the first equality holds in (5.1). 

(2) (G, c)= (C, l) where C can be (a) isomorphic to l or (b) bigger than 
l (C3 l by virtue of an isomorphic sublattice of C to l). 

(a) (~, c )= ( / , / ) .  Then the CROC-valued logic (L,I,V) is weakly 
irreducible and, if it is at the same time a CROC-valued propositional 
system (or only l is atomic), we have 

(L,I,V)= U (L,,,I~,,Vx) 
X 

where I x contains two elements and L~ is irreducible and one I x corre- 
sponds to only one L x. The Lx's, for different a's, are not necessarily 
isomorphic to each other. Clearly an irreducible component (L x, Ix, Vx) is 
equivalent to an irreducible propositional system or CROC of Piron 
(1976). Thus these cases are reduced to the two-valued cases. By analogy 
we may call such a CROC-valued logic the pure quantum case of a 
nonrelativistic local field theory (cf. below and Banai, 1980a). 

(b) CD l. Then 

as in (4.1). Thus 

U (<,t, Vx) 
X 

(L,t,v)= U (Lo, t,<) 

where each component of the direct union is a weakly irreducible CROC- 
valued logic and the center of each L~ is isomorphic to l. If (~,  c) is atomic 
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then 

(Lo, t,V,O= U (L~,IB,Vo~) 
B 

we reduce these cases to the usual two-valued ones, too. By analogy we 
may say in these cases that the non_relativistic field theoretic system 
possesses superselection rules (cf. below and Bahai, 1980a). 

(3) (G, c) is arbitrary. 
Let us consider the cases (a) C ~  c and (b) GD c. 
(a) C------- c. Then the CROC-valued logic (L, l, V) is weakly irreducible 

and, if C is atomic, 

(L,I,V)= U (L<<, A,, v<,) 

where the center pair (C,, %) of an irreducible component (L~, l~, V,) is 
((8=, ~=}, (0~, 1~}). Such a CROC-valued propositional system in general, if 
l contains nontrivial elements, cannot reduce to the usual two-valued cases. 
By analogy again, we may call such a CROC-valued propositional system, 
or generally CROC-valued logic, the pure quantum case of a relativistic 
local field theory (cf. below). 

(b) ~D c. Then 

where C~ ~ c. Thus 

(~, c,vle)= U (c,,, c,Vl~o) 
O~ 

(L, / ,v)= tO (co, t, vo 
Ot 

where each component is a weakly irreducible CROC-valued logic. If 
(C, c, Vie) is a classical CROC-valued propositional system, then 

(L, t, V) = tO (Loa, re, V~p) 
aB 

where 

(C~B' c / O = ( (  R~e' - e ) '  {OB, 1/~)) 

We may say in that case, too, that the relativistic system P(12) has 
superselection rules (cf. below). 
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Remark. We see that only those CROC-valued propositional systems 
and CROC-valued logics having an atomic center pair can reduce to the 
usual two-valued logic cases (structure-preserving way), in which the set of 
logical values l is a Boolean lattice. This shows the generality of the 
CROC-valued logic. (See still Banai, 1980b.) 

We see further from Propositions 18 and 20 that if one were able to 
represent all weakly irreducible CROC-valued logics then the representa- 
tions of all other CROC-valued logics are the direct union of such 
CROC-valued logics. This would give a possibility of leaving the axioms 
(A9)-(A10) which have no direct physical meaning. (The components c~, 
isomorphic to the center of l, behave like "atoms" in the center of L.) 

6. SYSTEMS OF PROPOSITIONS IN LOCAL FIELD 
T H E O R I E S  

We now show briefly that the two types of noncompatibility relative 
to measurement processes, mentioned in the Introduction, can be de- 
scribed intrinsically in the CROC-valued propositional systems. 

(1) Classical Physical System P(~2): All propositions are compatible 
with each other; so L is a distributive lattice. The propositions take their 
values in P(~2), generally. Thus the propositional system of P(~2) is a 
classical CROC-valued propositional system (L, ~ V) which can re- 
duce to the usual two-valued case. [The latter statement is not true if we 
drop the axioms (A9), (A10) of atomicity.] 

(2) Nonrelativistic Quantum System P(f~), f]c R3: Two different mea- 
surements on the same region S of f~ (or at the same point x of f~, ideally) 
can disturb each other, then the corresponding propositions taking the true 
part of their values on S (or on x) are, in general, not compatible. Thus the 
lattice of propositions L is a nondistributive lattice. On the other hand the 
measurements in two disjoint subsets S~, $2 of f~ (or at two disjoint points) 
are always compatible, thus the corresponding propositions A 1, a 2 taking 
the values v(A1)= S 1, v(A2)= S 2 must be compatible, i.e., if v(A1)A_ v(A2), 
v ~  V then A~--~A 2. Also the values of propositions can be represented by 
@(~) and the propositional system of P(~2) is a CROC-valued proposi- 
tional system (L, P(f~), V). The requirement of local commutativity fol- 
lows then from Lemma 5. [If we regard only the local observables whose 
measured value is a measurable function on ~] then ~ reduces to ~(f~).] 
If the center of L is isomorphic to @(f~) then 

(L, P(a), V)= (_J (Lx,(~,x},Vx) 
x E ~  

where (Lx, (~, x), Vx) represents a pure quantum system at the point x El i  
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(in the terminology of Piron, 1976), and this fact suggests the name "pure 
quantum case of nonrelativistic field theory" for these cases. This makes 
clear the name "superselection rules in the nonrelativistic case" above (for 
further details see Banai 1980a). 

(3) Relativistic Quantum System P(f~), ~ c_ M4: The lattice L is again 
nondistributive. Einstein causality determines the compatible dements of 
l=l(~2); spacelike separated regions $1, S 2 (or points xl, x2) of ~ must be 
compatible, then if $1, S z ~ l (  f~), S 1 _1_ S 2 and v( A1)=S1, v( A2)=Sz,  v E  V 
then AI~--~A 2 (cf. Lemma 5). Other regions or points (timelike or lightlike 
separated ones) need not be compatibles. These mean that l(f~) has, in 
general cases, the following lattice structure: if S is a spacelike hyperplane 
in f~ then it determines a Boolean subalgebra of l(a), and conversely, each 
Boolean subalgebra of l(~) is isomorphic to a P(S) where S is a spacelike 
subset of a. It follows further that if h~l(f~) then 

h '=  {x E~2, x spacelike separated to all (y ~f~ andy < h)) 

The only elements of l(f~) that are compatible with all others are the empty 
set Z = 0 and the whole f] (= M4). Thus l(f~) is irreducible. We obtained 
that the CROC-valued propositional system (L, l, V)=(L,  l(~2), V) is irre- 
ducible, if L is irreducible, and may describe a pure relativistic quantum 
system P(f~). All other CROC-valued propositional systems (L, 1, V) corre- 
sponding to relativistic quantum systems P(f~) are direct unions of irre- 
ducible CROC-valued propositional systems (L~, l~(~), V,,), where l~(f~) 
has the same lattice structure as l(f~) above. We may say by analogy that 
P(~2) possesses superselection rules. 

7. STATES, SYMMETRIES, AND OBSERVABLES AND THE 
CONNECTION WITH THE ALGEBRAIC APPROACH 

The states, symmetries, and observables can be defined in a CROC- 
valued propositional system (L, l, V) in a way similar to the corresponding 
definitions of Piron (1976). The pure states of a physical system P(f~) can 
be represented in the corresponding CROC-valued propositional system 
(L, l, V) [if it exists for P(f~)] by the atoms of L. The values of the atoms 
of L in l are the atoms of L On the other hand, we saw in the preceding 
section that the atoms of 1(~2) correspond to the points of the set ~2. Let 
xE~2 be the value of the atom P ~ L ,  then P represents the maximal 
("pure") information in L obtained from the system at the point x. 
Conversely, we can represent the maximal information obtained at the 
point x with an atom px of L (the value of px is x for a v E V). Thus the 
principle of locality can be formulated in the CROC-valued propositional 
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system (L,  I ( s  in a simple way. The all pure information obtained 
from the system P ( s  also can be represented by a collection (px,  x ~ S C 
s of atoms of L, where the points x are the atoms of a maximal Boolean 
subalgebra of l ( s  [in the nonrelativistic case this Boolean subalgebra is 
P ( s  S = s  and the relativistic case it is ~ where S is a 
spacelike subset in s We may call these collections {px, x@S} global 
pure states. A value function from V belongs to each global pure state and 
for all propositions (let K s denote these), compatible with the state {px, x 
ES},  we are also able to give the correspondence v: Ks---)6)(S), but we 
cannot say anything about the values of propositions which are not 
compatible with the collection (px, x E S } .  Conversely, a value function 
defines a global pure state for a maximal collection K s of compatible 
propositions; the state in which the proposition A E K  s takes the value 
v ( A ) E • ( S ) c I ( s  the family (PX, x ~ S }  of the atoms of the collection 
K s (K  s is a maximal Boolean algebra of L)  gives the global pure state. 

A symmetry should be a bijective mapping of L onto itself which 
preserves the LUB and orthocomplementation. Such a bijection is an 
automorphism, for the inverse map possesses the same properties. A 
symmetry preserves the compatibility relation and maps the center of L 
onto itself. At present the exact connection is not known between the 
symmetries of L and the symmetries of l which can be defined in a similar 
way. Nevertheless, we expect from the physical point of view that every 
symmetry of L generates a symmetry of 1 and conversely, every symmetry 
of l induces a symmetry of L. It is clear that this means a restriction on the 
value functions in V. For example, let G be a geometrical symmetry group 
on the physical space s and let s(g) and S(g) be the representations of G 
among the automorphisms of l ( s  and L, respectively. Then the invariance 
of a value function v under the double action of G on L and on l ( s  is 
expressed by the commutativity of the diagram 

S(g) 
L . L  

l(fl) ' l (a) ,  v o s ( g ) = S ( g ) o v ,  v E V  

This condition formally coincides with the imprimitivity condition of 
Mackey for observables. Now this condition would express the invariance 
of the state, corresponding to the value function v, under the action of the 
group G. 

A (local) observable is defined as a correspondence between the 
propositions associated with the measuring apparatus A(s  and those 
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associated with the physical system P(~2). But the CROC associated with 
A(~2) is not necessarily Boolean and atomic. 6 In the relativistic case, the 
measurements in two timelike or lightlike separated regions can disturb 
each other. Thus we should have to associate with A(~2) a (non-Boolean) 
CROC A, where A is a direct union of a(f~)'s each having a lattice 
structure similar to 1(~2) in the relativistic case, the only difference being 
that they are not necessarily atomic. This is the reason why we shall call a 
nonrelativistic (local) observable every c-morphism (or more generally, 
o-morphism) from a Boolean CROC of subsets of real-valued functions on 
f~ c_ R 3 into L of the CROC-valued propositional system (L,  q~(f]), V) and 
a relativistic (local) observable every c-morphism (a-morphism) from 

A = U ai(~), ~ C ~r into L of the CROC-valued propositional system 
i 

(L, l(f~),V). Then a nonrelativistic observable determines the spectral 
decomposition of a real-valued function, with respect to a value function v 
in II, and a relativistic observable determines the spectral decomposition of 
a family of self-adjoint operators, with respect to a value function v in IT. 
This real-valued function on ~2 c_ R 3, respectively, self-adjoint operators on 
the Hilbert space H(~2) associated with ~ C ~ 4  (el. Section 7) is the 
measured value and values of the nonrelativistic observable, respectively, 
relativistic observable. (Each measured value of a relativistic observable, 
with respect to a value function, is concentrated on a spacelike subset of f~, 
on which it can be measured without dispersion.) 

We note that the states and the connection of them with the prob- 
abilistic description and the symmetries and the nortrelativistic observables 
are studied in more detail in the nonrelativistic case by Banai (1980a). 

Now we can easily see that the postulates of isotony and local 
commutativity of Haag and Kastler (1964) (or see Emch, 1972) for local 
field theories are satisfied naturally by our propositional systems; further 
the space-time covariance can be implemented in a natural way in these 
propositional systems. From the definitions of observables and symmetries 
follows that the algebra of local observables of a physical system P(f~) is 
generated by the CROC-valued propositional system (L , / ,  V) of P(~2) and 
the symmetries of the local algebra are represented by automorphisms of 
this algebra. Thus it is sufficient to show that the postulates hold for the 
CROC-valued propositional systems (L,  I, V). 

Let b be an open set with compact closure in the configuration space 
(R 3 or ~ 4 )  and f~ be the set theoretic union of b's. Then (L b, l(b), Vb) 
denotes the CROC-valued propositional system of local propositions in the 

6We do not have to associate with A(~2) a CROC-valued logic, as we can easily see (el. the 
classical case in Section 2). 
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region b. Now (Lb, l(b), Vb) generates the algebra A(b) of local observa- 
bles in b, and the CROC-valued propositional system (L, l(~2), V) gener- 
ates the set theoretic union of A(b)'s (and its completion), A. It follows 
from the construction of the CROC-valued logic (L, l(f~),V) that (see 
Banai, 1980c) 

(Lb,l(b),Vb)=([ O, Bb],[O,b],Vto, Bb]) 

where [0, B b] and [0, b] are in order the segments of L and l(f~) with the 
relative orthocomplementations. (Lb, l(b), Vb) is a sub-CROC-valued logic 
of (L, l(f~), V) (see Banai, 1980c); the corresponding A(b) is a subalgebra 
of A. Now we have the following. 

(1) Isotony: if b 1 cb 2 then 

( Lb? /( bl), Vb,) C( Lb 2, l ( b2 ) ,  Vb:) 

what satisfies in (L, l(f~), V), in fact. 
(2) Local commutativity: if b I / b 2 then 

( Lb, , l( b,), Vo,),~-~,( Lb2, /( bE), Vb2 ) 

i.e., the elements of Lb~ are compatible with the elements of Lb2 in L as we 
saw above (Lemma 5.). 

(3) Covariance: Let G denote either the Euclidean group E 3 or the 
inhomogeneous proper Lorentz group L~+, according to the nonrelativistic, 
or respectively, relativistic case. Then G is represented by automorphisms 
A EL---~A ~ EL, gEG from the definition of symmetries. The covariance 
postulates now are equivalent to the requirement 

(L, t(b), v y =  t(gb), 

in (L, l(f~), Ira), where gb is the image of the region b under the action of g 
and the elements of Va are compatible with the symmetry group G (they 
are invariant under the action of G). 

It is clear that one could control the other postulates of Haag and 
Kastler (1964, postulates 1, 4, and 6), in which they postulate the C*- 
algebraic properties and structure of A(b)'s and A, with the determination 
of the algebraic structure of local algebras generated by (L b, l(b), Vb)'s and 
(L, l(f~), V) (see Banai, 1980a). 

A further note is that the axioms (A9) and (A10) have no substantial 
role in the above considerations; one could use only CROC-valued logics 
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instead of CROC-valued propositional systems in a more general consider- 
ation [in that case we can define, for example, the states of the physical 
system with the maximal filters of L (instead of the atoms of L)]. 

8. REALIZATION OF CROC-VALUED LOGICS 

Finally let us give some examples of realizations of CROC-valued 
logics with topological, especially with Hilbert modules, which are among 
the most common structures for realizations. 

(1) (L ,  l, V)  is Classical. If (L, 1, V) is a CROC-valued propositional 
system, then an irreducible component of it is isomorphic to a set with two 
elements and (L, l, V) is a direct union of such sets. On the other hand, 
there exists a set F to l such that l= 62(F) and F is the set of the atoms of l 
(Piron, 1976). Then we can easily see that (~[~(F)], P(F) ,V) is a 
CROC-valued propositional system, where the elements of V are generated 
by the real-valued functions F ~ R  (if F is countable). It is clear that 
~[P(F)] is a propositional system. Now, as is well known from the set 
theory, 62(F) can be represented by the set R(F) of all real-valued 
functions on F. Then P(@(F))=P(R(F)).  Let S(fl) be representable with 
a mapping F~P(R);  x ~ i  x. Now if f E R ( F )  then define the mapping vy: 
r the following way: 

v,[ = (x lx  f(x)Ei,, = S([2)} 

One can easily verify that vf satisfies the definition of a value function 
(Definition 3.). Conversely, if v is a value function from 6)(R(F)) to 62(F) 
and F is countable then v generates a function f E R ( F )  because v is a 
unitary c-morphism (see Piron, 1976). 

Now let wEP(F)  be arbitrary and let R(~0) be the set of those 
elements of R(F) which map the Cw to 0 (C~ is the complement of ~0). 
Then R(w)E~(R(F))  and v(R(~))=to, V v ~ V .  Also (P(~ ~(F), V) 
is a CROC-valued propositional system, in fact. 

Now let (L, l, V) be a classical CROC-valued logic and F be a set; 
further let b(F) be a CROC from the subsets of F such that l=b(F).  Let us 
consider R(F); then L can be embedded into a CROC of subsets of R(F). 
Let B(R(F)) be a CROC such that the elements of B(R(I')) take their 
values in b(F) and if ~,Eb(Y) then R(T ) (the set of functions mapping CT 
into 0) is an element of B(R(F)). Then L = B ( R ( F ) ) = P ( R b ( F ) )  , where 
Rb(F ) is a subalgebra of R(F) generated by b(F). The elements of V are 
generated by the elements of Rb(F ) OfF  is countable); thus (L, I ,V)= 
(~(Rb(r)), b(r), Vb). 
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Let us consider algebraically the structures under consideration. Rs(F ) 
generated by b(F) is a subring of the ring R(F). On the other hand, 
B(R(F)) generates a subalgebra MB[R(F)]=M[Rb(F)] of the set M[R(I ' )]  
of functions from R(F) to R(F). M[R(F)]  is a module over R(F) and 
MB[R(F)] is a submodule of M[R(F)]  and M[Rb(F)] is a module over 
Rb(F ). Also, in general, the classical (L, l, 1/) can be embedded into the 
pair (M[R(F)],  R(F)), where M[R(F)]  is a module over R(F). 

(2) (L, l, V) Describes a Pure Nonrelativistic Quantum Case ((~, c )=  
(l, l)). If l is atomic then (L, l, V) can be realized by a direct integral of 
Hilbert spaces (Piron, 1976). Another example is provided by the A W*- 
module of Kaplansky (1953). Let H A be a faithful AW*-module (which is 
also a Hilbert module in our terminology) over A (A is a commutative 
A W*-algebra). Then the set of A W*-submodules of H A (denoted by 
P[HA] ) is a CROC. By definition, the ordering relation is the set theoretic 
inclusion relation; every intersection of A W*-submodules is an AW*- 
submodule, which implies the existence of a GLB. The mapping which 
brings an A W*-submodule into correspondence with its orthogonal com- 
plement, is an orthocomplementation. The weak modularity relation can 
be verified immediately by passing over to orthogonal projectors of the 
A W*-submodules. Let A be a commutative A 14r*-algebra such that the 
lattice of its self-adjoint projectors l(A) is a distributive CROC, and H A be 
an A W*-module over A. Let now l(A) be atomic andp  denotes an atom in 
it. Further let H A be a homogeneous A W*-module with orthonormal basis 
(xx} and P be a one-dimensional submodule of H a ((axv}, a EA and 
xv E{xx} ). Then p e  represents an atom in P(Ha). Now (A9) satisfies 
trivially in P(Ha)  and (A10) can be checked with a similar argument as in 
the case of Hilbert spaces. Let B=~(~2)=I(A)  [in the function algebra 
C(F), representing A, now F is a Stonean space belonging to B and B is 
atomic, which means that the set of isolated points of F is dense in F; 
~ = F ) .  Thus we get that in (~ ~ and P(f~) are 
propositional systems, and an element of V generates a function in R(F), 
restricted v to a maximal Boolean subalgebra of ~ (Ha)  (and if f~ is 
countable). Conversely, every f E R ( F )  defines a value function, mapping 
into ~(~2), on a maximal Boolean sublattice of ~(Ha) in a way described 
under (1) above. [This mapping certainly coincides with a value function 
from P(HA) onto P(f~), but not necessarily in a unique way.] 

Now let o9 be an element of P(f]) and e~ be the projector in A 
corresponding to ~0; then e,~H A is an element of P(Ha) and v(e,~Ha)=o~, 
VvEV.  Since H a is faithful with respect to A thus for all ~EP(~2) 
eo, H a ~ 0  ( ~ 0 ) .  We obtained that (~(Ha) ,  ~(f~), V) is a CROC-valued 
propositional system and weakly irreducible since ~ (~ )  is isomorphic to 
the center of ~ (from Theorem 7 of Kaplansky, 1953). 
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If we assume not that B is atomic and H A is homogeneous, then 
(P(HA), B, V) is only a weakly irreducible CROC-valued logic (see Banal, 
1980c). 

This example suggests that we use H A, in the description of a nonrela- 
tivistic (local) quantum system P(f~), in a similar way as a Hilbert space is 
used in the Hilbert space formulation of a quantum mechanical system. 
(See in detail Banai, 1980a). 

(3) By generalizing the above example, we should like to determine the 
Hilbert realization (i.e., with Hilbert modules over C*-algebras) of the all 
irreducible CROC-valued propositional systems and weakly irreducible 
CROC-valued logics, but in the present stage of our work, we have only 
conjecture for the representations of the CROC-valued propositional sys- 
tems in the pure relativistic quantum cases. [See still for general conjec- 
tures and expectations of the Hilbert realization of CROC-valued logics 
Bahai (1980c).] 

Briefly this is the following: l(f2) is irreducible, thus we can represent 
it with closed subspaces of a Hilbert space H(f~). This means that we 
should impose on f~ ( ~- ~4)  a Hilbert space structure with a bilinear inner 
product (,~. Then the Boolean subalgebras in P[H(f~)]=l(f l )  are de- 
termined by the spacelike subsets of f]. The orthocomplement of an x ~ f~ 
is the set of all x 'Ef~ with g ~ , , ( x - x ' y ' ( x - x ' )  ~' <0.  This gives that the 
inner product should have the property (x, x ' )  = 0 for all x, x '  ~f~, gt,,(x - 
x ' ) ~ ( x -  x')" < O. 

Let A(~) be a C*-algebra generated by the orthogonal projectors of 
H(9)  [then A(~) is a factor and, when l(f~) is atomic, of type I]. Then any 
commutative subalgebra of A(f~) is isomorphic to a C(S), where S is a 
spacelike subset of fL 

Let HA(u) be a Hilbert module over A(f~), i.e., an inner product taking 
values in A(9) exists on HA(u) and this inner product generates an A-norm 
on HA(u) and HA(u) is complete with respect to this A-norm [see for exact 
definitions Banal (1978, 1980a)]. Then the set P[HA(u) ] of all dosed 
submodules of HA(u) is an irreducible CROC, and (6)(HA(~)), r V) 
is an irreducible CROC-valued logic if HA(~) is faithful. The eigenvalues of 
the orthogonal projectors of the elements of P[HA(~) ] are the self-adjoint 
projectors of A(~2). 

We see that the first problem along this line of thought is the 
determination of the exact connection between the lattice of projectors of 
A(~) (or, equivalently, the lattice l(f]) of values of the local propositions) 
and the structure of space-time. We should like to discuss this problem in 
more detail in another paper. 

Remark. Here we would like to mention an interesting related work of 
G. Takeuti (1979). Takeuti introduced the quantum set theory as a set 
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theory based on quantum logic. He generalized the Boolean-valued model 
of set theory to an L-valued model, where L is the lattice of all closed 
linear subspaces of a Hilbert space. It is clear that there is a close 
connection between the quantum set theory of Takeuti and the above- 
developed lattice-valued logics; for l =  L, the CROC-valued logics (L, l, V) 
give special (and differently defined) examples for L-valued models and 
the topological modules (thus the Hilbert modules, the most favorite 
candidate for realizing CROC-valued logics) give the characteristic struc- 
tures of the universe V (L) of quantum set theory. Thus we can develop the 
theory of functional analysis of topological modules based on the mathe- 
matics that follows from quantum set theory. 

We note also that we developed here the theory of lattice-valued 
logics, independently of the work of Takeuti, from a physical point of view 
considering the measuring processes of a local field theoretic system. It 
follows also from this viewpoint that the mathematics used by the well- 
defined relativistic quantum theory of local fields will have to be in deep 
connection with the mathematics based on quantum set theory. 
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